Anomaly Detection in Large Scale BGP/MPLS VPN networks

Alex HUANG FENG, INSA de Lyon - CITI
Pierre FRANCOIS, INSA de Lyon - CITI
Wanting DU, Swisscom A.G.
Thomas GRAF, Swisscom A.G.
Project

- Project funded by Swisscom A.G.
- Research and Open Source Development
 - Network information collection
 - Research
 - Standardisation
 - Implementation
 - Network measurements
 - Research
 - Standardisation
 - Implementation
 - → Scalable Anomaly Detection Solution
Context - BGP/MPLS VPNs

- ~10K VPN customers
- Multiple dimensions
 - Traffic
 - Routing protocols
 - Network elements
- ~1M msg/s when nothing’s happening
Anomaly detection - Architecture

* Collector: http://pmacct.net/
Functional Requirements

- **Scalability**
 - ~10K VPN customers
 - Many dimensions
 - ~ Real Time responsiveness
- **Configurability**
 - Minimal configuration effort, yet,
 - Not all customers are alike
- **Extensibility**
 - Ability to define a new anomaly detection technique on their own
- **Standard Interfaces**
 - Protocols should be IETF standards
 - Messaging system should be standard
Architecture Challenges

- **Inventory**
 - Know which client we want to monitor

- **Onboarding**
 - Know which nodes are monitored
 - Know which monitoring features are available on the monitored nodes

- **Profiling**
 - Know the behavior of the customer

- **Collecting**
 - Collect metrics from the monitored nodes
 - Correlate collected metrics

- **Detecting**
 - Find appropriate approaches to detect anomalies for customer profiles
 - Generate alerts when anomalies are detected
Research challenges

● SoA of Machine Learning to detect anomalies in core networks still not convincing
 ○ False positives
 ○ False negatives
 ○ Unrealistic assumptions on the network (all fully onboarded customers)
 ○ Customers cannot be looked at the same way

● An anomaly is “whatever a human operator would frown at when looking at the monitored data, knowing how the customer usually behaves”

● First step:
 ○ Rule based AD
 ○ ML Based customer profiling
IETF challenges

- Getting very large amounts of data from the router without stressing the router
 - draft-ietf-netconf-udp-notif-09

- New core network technology: SRv6
 - draft-tgraf-opsawg-ipfix-srv6-srh-05

- New metrics
 - draft-tgraf-opsawg-ipfix-on-path-telemetry-01
Current development status

- PoC AD developed in Python
- Interop testing of upcoming standards with main vendors (Cisco, Huawei, ...)

[Graph showing data trends]
Conclusion

- Anomaly detection in BGP/MPLS VPN networks
 - is not easy when you’re actually trying to do it
 - still requires standards and running open source code
 - requires real operational data
 - we hope ML will actually help, one day