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Context: Intrusion Detection

➔ Different families: misuse detection, anomaly detection, specification-based…

➔ Machine learning (ML) and deep learning (DL) often used for their performance;
• Eg., auto-encoder (AE) can be used for anomaly detection.

➔ DL need a lot of data to be efficient, training them locally is a challenge;
• Eg., for AE, anything not known is an anomaly → higher false-positive rate.

Fig 1: Typical AE workflow for IDS
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Collaborative Intrusion Detection

Fig 2: Typical CIDS (Collaborative Intrusion Detection System) workflow

Objective

➔ Consolidate normal behavior 
modeling by sharing knowledge 
with other participants;

Challenges

➔ Security & Privacy – eg. revealing 
internals, poisoning, trust [1];

➔ Availability – eg. single point of 
failure in centralized systems [2];

➔ Resources – eg. high bandwidth 
consumption when sharing data [3];

[1] C. Fung et al. “Trust Management for Host-Based Collaborative Intrusion Detection.” In Managing Large-Scale Service Deployment, 2008.
[2] S. Rathore, et al., “BlockSecIoT-Net: Blockchain-based decentralized security architecture for IoT network,” Journal of Network and Computer Applications, 2019
[3] B. McMahan, et al., “Communication-efficient learning of deep networks from decentralized data”, 20th International conference on artificial intelligence and 

statistics, 2017
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Federated Learning as a Collaborative Learning System

Fig 3: Typical Horizontal Federated Learning workflow for CIDS Challenges [4]

➔ Heterogeneity – unsuitable global aggregation 
when participants are too different.

➔ Trust – assessing peer contributions.

[4] L. Lavaur, et al., “The Evolution of Federated Learning-Based Intrusion Detection and Mitigation: A Survey”, IEEE Transactions on Network and Service 
Management, 2022
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Our approach

Objective: Mitigate the impact of bad contributions to 
the local models;

Fig 4: Proposed architecture
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Our approach

Objective: Mitigate the impact of bad contributions to 
the local models.

➔ How to evaluate models in highly 
heterogeneous settings?

I. Cross-evaluation

Fig 4: Proposed architecture
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Our approach

Objective: Mitigate the impact of bad contributions to 
the local models;

➔ How to evaluate models in highly 
heterogeneous settings?

➔ How to set aside dissimilar participants?

I. Cross-evaluation

II. Clustering clients’ contributions

Fig 4: Proposed architecture
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Our approach

Objective: Mitigate the impact of bad contributions to 
the local models;

➔ How to evaluate models in highly 
heterogeneous settings?

➔ How to set aside dissimilar participants?
➔ How to identify and discard similar but 

negative behaviors?

Fig 4: Proposed architecture

I. Cross-evaluation

II. Clustering clients’ contributions

III. Reputation system
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I. Assessing Contributions
 with Cross-Evaluation 
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[6] C. Briggs, et al., “Federated learning with 
hierarchical clustering of local updates to 
improve training on non-IID data”, 2020

10I. Assessing Contributions with Cross-Evaluation

Methods for filtering contributions

[7] L. Zhao, et al., ”Shielding Collaborative 
Learning: Mitigating Poisoning Attacks 
through Client-Side Detection”, 2020

[5] J. Zhou, et al., “A Differentially Private 
Federated Learning Model against Poisoning 
Attacks in Edge Computing”, 2022

➔ only applicable in IID settings
➔ single source of truth

[5] [6] [7]

➔ less related to client data
➔ more appropriated for 

high-dimensional features

➔ high cost in cross-device settings
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Advantages

➔ Central server doesn’t need prior knowledge.
➔ Evaluates how each model fits the data (eg., accuracy).
➔ Exhaustive overview of the entire system at round r.
➔ Keeps the subjectivity of the evaluations.

Drawbacks

➔ Expansive in communication and computation.
➔ Doesn’t scale well.

But…   
➔ Cross-silo: Few clients, with reasonable computing 

capacity.
➔ Slow workflow: long time between rounds.

11

Cross-evaluation workflow

I. Assessing Contributions with Cross-Evaluation

Fig 5: Cross-evaluation
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II. Fighting Heterogeneity
with Clustering
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Merging heterogeneous contributions

II. Fighting Heterogeneity with Clustering

Global model can either:

➔ lose accuracy by trying to fit all 
participants [8];

➔ dismiss some participants [9]. 

[8] Cai, et al. “Cluster-Based Federated Learning 
Framework for Intrusion Detection.” In 2022 IEEE 13th 
International Symposium on Parallel Architectures, 
Algorithms and Programming (PAAP)

[9] Blanchard, et al. “Machine Learning with Adversaries: 
Byzantine Tolerant Gradient Descent.” Advances in Neural 
Information Processing Systems 30 2017.
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Merging heterogeneous contributions

II. Fighting Heterogeneity with Clustering

Global model can either:

➔ lose accuracy by trying to fit all 
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➔ dismiss some participants [9]. 

[8] Cai, et al. “Cluster-Based Federated Learning 
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International Symposium on Parallel Architectures, 
Algorithms and Programming (PAAP)

[9] Blanchard, et al. “Machine Learning with Adversaries: 
Byzantine Tolerant Gradient Descent.” Advances in Neural 
Information Processing Systems 30 2017.
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Merging heterogeneous contributions

II. Fighting Heterogeneity with Clustering

Clustering goal:

➔ regroup similar participants together;
➔ create an aggregated model per 

cluster.

Cluster 1

Cluster 2
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Clustering data source

➔ Participants models [10].
➔ Cross evaluation results.

Clustering for federated learning 

➔ Dynamic split and merge [11].
➔ Hierarchical clustering [10].

[10] Briggs, et al.  “Federated Learning with Hierarchical Clustering of Local Updates to Improve 
Training on Non-IID Data.” In 2020 International Joint Conference on Neural Networks 
(IJCNN),2020 
[11] Chen, et al. “Zero Knowledge Clustering Based Adversarial Mitigation in Heterogeneous 
Federated Learning.” IEEE Transactions on Network Science and Engineering 8, no. 2, 2021
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Existing clustering approaches for federated learning

II. Fighting Heterogeneity with Clustering

Fig 6: Hierarchical clustering
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III. Ensuring Quality 
Contributions with Reputation 
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III. Ensuring Quality Contributions with 
Reputation

[12] Karimireddy, et al. “Learning from History for Byzantine Robust Optimization.” In Proceedings of the 38th International 
Conference on Machine Learning, PMLR, 2021.
[13] Resnick, Paul, et al. "Reputation systems." Communications of the ACM 43.12 (2000): 45-48.

Motivation for reputation

Objectives reminder: 

➔ weight participants contributions;
➔ detect change that occur over time [12]. 

➔ Long-lived entities that inspire an expectation of future interaction; 

➔ Capture and distribution of feedback about current interactions (such information 
must be visible in the future); and 

➔ Use of feedback to guide trust decisions.

Definition [13]
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Dirichlet distribution [15,16]
➔ Multinomial distribution.
➔ Allow discretization of cross evaluation results.

Similarity
➔ Cluster outliers shouldn’t have too much impact 

on evaluation. 
➔ Ponderate client evaluation using their similarity 

to other cluster members [14]. 

Historical considerations
➔ No specific constraints.
➔ Exponential decay: older results fade away. 
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III. Ensuring Quality Contributions with 
Reputation

Evaluation weighting

[14] Li Xiong, et al.  “PeerTrust: Supporting Reputation-Based Trust for 
Peer-to-Peer Electronic Communities.” IEEE Transactions on Knowledge and 
Data Engineering 16, no. 07, 2004

[15] Josang, et al. “Dirichlet Reputation Systems.” In The Second International 
Conference on Availability, Reliability and Security (ARES’07) 2007.

[16] Fung, et al. “Dirichlet-Based Trust Management for Effective Collaborative 
Intrusion Detection Networks.” IEEE Transactions on Network and Service 
Management 8, no. 2, 2011



Conclusion

Achievements

➔ Preliminary clustering validation:
• done at the end of the first round of FL;
• 8/10 clients are in the correct cluster;
• empirical demonstration of cross-evaluation.

Future works

➔ Chain the functional blocks:
• implement clustering and cross-evaluation; 

into the Flower framework;
• test the reputation system.

➔ Extensive evaluation:
• of each atomic block;
• of the chained system.

20
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- "standardized IDS datasets" [17] (UNSW-NB15, 
BoT-IoT, ToN-IoT, and CSE-CIC-IDS2018)

- 4 datasets = 4 use cases where clients are 
distributed in the use cases

- normalized features among all datasets
- Flower FL Framework (https://flower.dev)

21Annexes

Annex 1: Datasets and experimental platform

[17] M. Sarhan, S. Layeghy, and M. Portmann, *Towards a Standard Feature Set for Network Intrusion Detection System Datasets,* arXiv.org, 2021

https://flower.dev


Léo LAVAUR – Pierre-Marie LECHEVALIER 22Annexes

Annex 2: Preliminary clustering results

Fig 7: Rand index for hierarchical clustering with mean 
cluster interdistance as threshold 


