

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

LYON

EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT 2-WAYS RANGING

YANN BUSNEL IMT ATLANTIQUE, IRISA HERVÉ RIVANO INSA, CITI/INRIA

GEOLOCATION

An almost indispensable function

- When an object is mobile (IoT, Drone, etc.)
- To check that a property is retained

Typical solution: GPS

- Power consumption / integration cost
- Accuracy ~ decametric (submetric with RTK)

An alternative: geolocation via the network

- Interface already present: no or low additional cost if added
- UWB: possibility of being sub-centimetric
- **Relative positioning**

TRILATERATION

General principle of coordinate calculation

- 3 references (in 2D, 4 otherwise) minimum
- A quadratic system: $d_i^2 = (x_i x)^2 + (y_i y)^2$

Intersection of > 3 circles

- Imprecision => minimisation and approximation
- GPS: ten or so satellites

How to estimate distances?

- This is where radio can be used: $d = c * t_{vol}$
- It is "enough" to estimate the time of flight between 2 nodes

AYS RANGING I YANN BUSNEL & HERVÉ RIVANO I JOURNÉES GDR RSD - 26/01/23

NÉES GDR RSD - 26/01/23

Time of Arrival

 $- t_{arrival} - t_{departure}$: easy!

Need for synchronous clocks **T** NTP : precise ~ $10^{-5}s$ - But $c \simeq 3.10^9 m \cdot s^{-1} => \text{ error of } 10^4 m \parallel$

We want to avoid relying on synchronisation

Function of a round trip time
$$\frac{t_2 - t_1 + t_4 - t_3}{2}$$
We always compare non-synchronised
 $\frac{t_2 - t_1 + t_4 - t_3}{2} = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$

- The times do not need to be synchronised to be consistent
- Accuracy = resolution of the clocks = ten pico-seconds
- Theoretically millimetre precision (the size of Theoryland)

[1 **โ**4 t₂ t₃

clocks

BASELINE FOR FTM FINE TIMING MEASUREMENT

THE TROUBLED HISTORY OF FTM – 1: TM

STA clock offset is $(t_2 - t_1) - (t_4 - t_3)$

Characteristics of TM:

- Only to associated AP
- Focus is time difference (no location) angle)

THE TROUBLED HISTORY OF FTM – 2: TO FTM

The stance is $(t_4 - t_1) - (t_3)$ $(-t_3)$ 7

Characteristics of FTM:

- To any AP (associated or not)
- Time Drifts are theoretically cancelled
 - Only to associated AP

This mechanism fulfill the needs of modern indoor location

WHAT IMPACT IN A DENSE NETWORK?

FTM is based on Unicast

- Complexity explodes in dense networks
- Not to mention collisions
- Complexity: 4 messages on each radio link
 - In a clique of n nodes : $O(n^2)$!
- Can we benefit from wireless broadcast communications?

WHY NOT TAKE ADVANTAGE OF **BROADCAST COMMUNICATION?**

EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT TWO-WAYS RANGING

11

Initiating a 2-way ranging

4 steps pairwise

EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT TWO-WAYS RANGING

11

Initiating a 2-way ranging

4 steps pairwise

Initiating a 2-way ranging

4 steps pairwise

Initiating a 2-way ranging

4 steps pairwise

EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT TWO-WAYS RANGING I YANN BUSNEL & HERVÉ RIVANO

I JOURNÉES GDR RSD - 26/01/23

4 steps pairwise

Any node in the network range will receive the message

It can use it as the init message of its own FTM

4 steps pairwise

Any node in the network range will receive the message

It can use it as the init message of its own FTM

Any other message sent can be also used

Required to piggyback all required informations

4 steps pairwise

Any node in the network range will receive the message

It can use it as the init message of its own FTM

Any other message sent can be also used

Required to piggyback all required informations

4 steps pairwise

Any node in the network range will receive the message

It can use it as the init message of its own FTM

Any other message sent can be also used

Required to piggyback all required informations

- 4 steps pairwise
- Any node in the network range will receive the message
 - It can use it as the init message of its own FTM

Any other message sent can be also used

Required to piggyback all required informations

Example with a 5-node clique

✓ With FTM-UC (Unicast) : $4\frac{n(n-1)}{2} = 40$ messages

- With FTP-BC (Broadcast) : 2n = 10 messages

JOURNÉES GDR RSD - 26/01/23 EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT TWO-WAYS RANGING YANN BUSNEL & HERVÉ RIVANO

EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT TWO-WAYS RANGING

Same behavior

Piggyback all previous timestamps

JOURNÉES GDR RSD - 26/01/23

EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT TWO-WAYS RANGING

 t_{1}^{4}

1,3

 $t_{1,2}^{2}$ $\left\{ t_1^3, t_{0,1}^2, t_{1,2}^4, t_{1,3}^4, t_{1,4}^4 \right\}$ of phase 1 $t_{1,3}^2$ $t_{1,4}^2$ $t_2^{\mathcal{I}}$ $\left\{ t_3^3, t_{0,3}^2, t_{1,3}^2, t_{2,3}^2, t_{3,4}^4 \right\}$ of phase 1 t_{2}^{2} 5,4

Bootstrap

When a neighbor of initiator replies, 2-hop neighbors consider it as init

Bootstrap

When a neighbor of initiator replies, 2-hop neighbors consider it as init

Bootstrap

When a neighbor of initiator replies, 2-hop neighbors consider it as init

Bootstrap

When a neighbor of initiator replies, 2-hop neighbors consider it as init

Need to piggyback the phase number

Never received a packet from this phase? Program a response which will include all the known dates of reception and sending

Bootstrap

When a neighbor of initiator replies, 2-hop neighbors consider it as init

Need to piggyback the phase number

Never received a packet from this phase? Program a response which will include all the known dates of reception and sending Already received a packet of this phase? Wait for the next phase

Bootstrap

When a neighbor of initiator replies, 2-hop neighbors consider it as init

Need to piggyback the phase number

Never received a packet from this phase? Program a response which will include all the known dates of reception and sending Already received a packet of this phase? Wait for the next phase

Problem: how to separate the two phases (in each neighborhood)?

- Introduction of a backoff-based delay mechanism
- \checkmark => build a wave crossing the network. Issue with large diameters

PERFORMANCE EVALUATION

AD-HOC SIMULATIONS

NB OF PACKETS SENT — FTM-BC VS FTM-UC (30 NODES)

FTM-BC

EXPLOITING WIRELESS NETWORK BROADCASTING FOR A MORE EFFICIENT TWO-WAYS RANGING

FTM-UC

JOURNÉES GDR RSD - 26/01/23

EVALUATION TIME OF ALL PAIRWISE DISTANCES (RANDOM GRAPH, 50 NODES, TIME VS AVERAGE DEG=NB EDGES/50)

FTM-BC: IMPACT DEGREE AND DIAMETER ON EXECUTION TIME (RANDOM GRAPH, 100 NODES)

BC-FTM

FTM-BC: IMPACT DEGREE AND DIAMETER ON EXECUTION TIME (RANDOM GRAPH, 100 NODES)

FTM-BC: IMPACT DEGREE AND DIAMETER ON EXECUTION TIME (RANDOM GRAPH, 100 NODES)

FTM-BC: IMPACT DEGREE AND DIAMETER ON EXECUTION TIME (LINEAR GRAPH, 101 NODES)

FTM-BC: IMPACT DEGREE AND DIAMETER ON EXECUTION TIME (LINEAR GRAPH, 101 NODES)

FTM-BC: IMPACT DEGREE AND DIAMETER ON EXECUTION TIME (LINEAR GRAPH, 101 NODES)

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

> - 1 MCF POSITION AT IMT ATLANTIQUE RENNES : IOT NETWORKS - 1 MCF POSITION AT IUT LANNION : NETWORKS AND CYBERSECURITY - 1 PROF POSITION AT IUT LANNION : NETWORKS AND CYBERSECURITY

LYON

THANKS FOR YOUR ATTENTION

YANN BUSNEL IMT ATLANTIQUE, IRISA HERVÉ RIVANO INSA, CITI/INRIA

ADVERTISEMENT!

